Utilizamos cookies propias y de terceros para mejorar nuestros servicios, analizar y personalizar tu navegación, mostrar publicidad y facilitarte publicidad relacionada con tus preferencias. Si sigues navegando por nuestra web, consideramos que aceptas su uso. Puedes cambiar la configuración u obtener más información aquí.

Científicos españoles detectan por primera vez la onda asociada a un electrón

Un grupo de investigadores españoles y franceses, liderados por Fernando Martín de la Universidad Autónoma de Madrid (UAM) y el Intituto IMDEA Nanociencia, y por Pascal Salières de la Universidad Paris-Saclay, ha descrito en la revista Science la primera observación en tiempo real del nacimiento de un paquete de ondas asociado al electrón y las interferencias asociadas a su posterior evolución.
Así, además de proporcionar la película del comportamiento ondulatorio de los electrones y de las interferencias que este movimiento lleva implícitas, el elevado grado de control y la alta resolución temporal alcanzados por el estudio permitirán desarrollar técnicas de diseño de paquetes de onda electrónicos en sistemas atómicos y moleculares, y eventualmente alterar su movimiento.
Además, según los investigadores, este hallazgo abre las puertas al control de las propiedades electrónicas de sistemas atómicos y moleculares, lo cual podría tener una incidencia directa en nanotecnología al permitir el diseño de materiales con propiedades electrónicas inusuales.
Con el advenimiento de la física de attosegundos (la escala de tiempo natural de los electrones), se ha abierto la posibilidad de realizar 'películas' que muestran explícitamente el movimiento ondulatorio de las partículas materiales y de los fenómenos de interferencia asociados al mismo.
Los investigadores bombarderaon un átomo de helio con una sucesión de pulsos de luz de attosegundos para medir el paquete de ondas asociado al electrón y las interferencias asociadas a su posterior evolución. Posteriormente, indujeron la ionización del mismo átomo por dos caminos diferentes, uno directo (ionización directa) y otro retardado (autoionización).
Así, al igual que una onda interfiere consigo misma cuando se desplaza por dos caminos distintos que llevan al mismo destino (como por ejemplo en el famoso experimento de la doble rendija de Young), la superposición de la ionización directa y la autoionización también da lugar a interferencias, las cuales se manifiestan en forma de picos con perfil asimétrico o de Fano.
Para visualizar el establecimiento de dicha interferencia, o, lo que es lo mismo, del característico perfil de Fano, se utilizó en el experimento un segundo pulso de luz de referencia con el que se irradió al átomo de helio en intervalos de tiempo del orden de 200 attosegundos.
De esta manera, los científicos pudieron determinar la amplitud y la fase del paquete de ondas electrónico producido por el tren de attosegundos y, de ahí, reconstruir la película que muestra el nacimiento de dicho paquete de ondas y el posterior establecimiento de la interferencia.
La interferencia entre los dos procesos que conducen a la ionización del helio tarda en manifestarse unos 5 femtosegundos (5.000 attosegundos).
El principio de la dualidad onda-corpúsculo, introducido en 1924 por el físico francés Louis Victor De Broglie, es una de las paradojas más intrigantes de la Física Cuántica. Según este principio, cualquier constituyente del universo se comporta a la vez como onda y como partícula, y dependerá del contexto el que se manifieste más de una forma que de la otra.
Así, partículas materiales como los electrones pueden experimentar fenómenos de interferencia y de difracción similares a los que exhiben las ondas, en particular la luz.
De hecho, multitud de fenómenos experimentados por esta última pueden interpretarse como el resultado del comportamiento de un conjunto de partículas sin masa denominados fotones.
La dualidad onda-corpúsculo no se observa en el mundo macroscópico que nos rodea: nunca veremos a una persona "difractarse" al atravesar una puerta, ni a una manada de elefantes moverse como lo haría una onda de radio.
La observación de dicho comportamiento dual solo es posible si se desciende a la escala atómica, es decir, a la escala en la que las distancias se miden en nanómetros (10-9 metros), las masas en unidades atómicas (10-27 kilogramos) y el tiempo en attosegundos (10-18 segundos).
Sin embargo, la mera existencia del universo y de la vida misma se debe en gran medida a esta dualidad onda-corpúsculo: el comportamiento de los átomos y las moléculas, las reacciones químicas, la estructura del ADN, el funcionamiento de los ordenadores y, en general, una buena parte de los fenómenos físicos, químicos y biológicos que conocemos, son consecuencia de que los constituyentes fundamentales de la materia se comporten a la vez como ondas y como partículas.
Gracias a la física de attosegundos, ha sido posible ahora observar, directamente y en tiempo real, las interferencias asociadas a ese movimiento "ondulatorio" de las partículas que componen la materia.